Search results for " Nitric Oxide"

showing 10 items of 122 documents

Nitric oxide: a multitask player in plant–microorganism symbioses

2016

Symbiosis is a close and often long-term interaction between two different biological organisms, i.e. plants or fungi and microorganisms. Two main types of plant–microorganism interactions, mutualistic and cooperative, have been categorized. Mutualistic interactions, including nitrogen-fixing and mycorrhizal symbioses, refer to mostly obligate relationships between a host plant and a symbiont microorganism. Cooperative interactions correspond to less obligate and specific relationships. They involve microorganisms, referred to as plant growth-promoting rhizobia (PGPR), able to colonize root surface or inner tissues. Lichens are symbiotic associations of host fungi and photosynthetic partner…

0106 biological sciences0301 basic medicineMicroorganism[SDV]Life Sciences [q-bio]LichenBiology01 natural sciencesRhizobia03 medical and health sciencesinteraction microorganisme végétalSymbiosisNitrogen fixationnitric oxideBotanyPlant symbiosisMycorrhizamicrobiologieLichenoxyde nitriqueObligateEcologyHost (biology)fungifood and beveragesbiology.organism_classificationsymbiosisLegume030104 developmental biologyNitrogen fixationPlant growth-promoting rhizobia (PGPR)MycorrhizasymbioseLegume Lichen Mycorrhiza Nitric oxide Nitrogen fixation Plant growth-promoting rhizobia (PGPR) Plant symbiosis Rhizobium010606 plant biology & botanyRhizobium
researchProduct

Integrated signaling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grape…

2006

We have already reported the identification of the endopolygalacturonase 1 (BcPG1) from Botrytis cinerea as a potent elicitor of defense responses in grapevine, independently of its enzymatic activity. The aim of the present study is the analysis of the signaling pathways triggered by BcPG1 in grapevine cells. Our data indicate that BcPG1 induces a Ca2+ entry from the apoplasm, which triggers a phosphorylation-dependent nitric oxide (NO) production via an enzyme probably related to a NO synthase. Then NO is involved in i) cytosolic calcium homeostasis, by activating Ca2+ release from internal stores and regulating Ca2+ fluxes across the plasma membrane, ii) plasma membrane potential variat…

0106 biological sciencesMAPK/ERK pathwayTime FactorsPhysiology[SDV]Life Sciences [q-bio]Phenylalanine ammonia-lyase01 natural sciencesNitric oxideFungal Proteins03 medical and health scienceschemistry.chemical_compounddepolarizationGene Expression Regulation Plantplant defensenitric oxideVitisdépolarisationProtein kinase ACells Cultured030304 developmental biology0303 health scienceselicitorbiologyelicitor; grapevine; plant defense; nitric oxideKinaseGeneral MedicinePlants Genetically ModifiedElicitorgrapevinechemistryBiochemistryMitogen-activated protein kinasebiology.proteinCalciumBotrytisMitogen-Activated Protein KinasesSignal transductionbotrytis cinereavigneReactive Oxygen SpeciesAgronomy and Crop ScienceSignal Transduction010606 plant biology & botany
researchProduct

Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides

2017

International audience; In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid β-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli-LPS decreased ACOX1 activity while Salmonella minnesota-LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activ…

0301 basic medicineAntioxidant[SDV]Life Sciences [q-bio]medicine.medical_treatmentAnti-Inflammatory AgentsPharmaceutical Scienceacyl-CoA oxidase 1; catalase; β-oxidation; <i>Escherichia coli</i>; lipopolysaccharides; LPS; nitric oxide; Opuntia; peroxisomes; <i>Salmonella minnesota</i>AntioxidantsAnalytical ChemistryMicechemistry.chemical_compoundSalmonellaDrug Discoverychemistry.chemical_classificationbiologyMicrogliaFatty AcidscatalaseOpuntiaPeroxisome[SDV] Life Sciences [q-bio]Neuroprotective Agentsmedicine.anatomical_structureBiochemistryChemistry (miscellaneous)CatalaseMolecular MedicineACOX1Microgliamedicine.symptomOxidation-ReductionLPSInflammationArticleCell LineNitric oxideMicrobiologylcsh:QD241-44103 medical and health scienceslcsh:Organic chemistrynitric oxideEscherichia colimedicineAnimalsSalmonella minnesotaPhysical and Theoretical Chemistryacyl-CoA oxidase 1[ SDV ] Life Sciences [q-bio]Plant ExtractsOrganic ChemistryperoxisomeslipopolysaccharidesOxidative Stress030104 developmental biologyEnzymechemistrybiology.proteinβ-oxidationReactive Oxygen SpeciesMolecules
researchProduct

The iNOS Activity During an Immune Response Controls the CNS Pathology in Experimental Autoimmune Encephalomyelitis

2019

Inducible nitric oxide synthase (iNOS) plays a critical role in the regulation of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Previous studies have shown that iNOS plays pathogenic as well as regulatory roles in MS and EAE. However, how does iNOS alters the pathophysiology of the central nervous system (CNS) in neuronal autoimmunity is not clearly understood. In the present work, we show that treatment of mice with L-NAME, an iNOS inhibitor, during the antigen-priming phase primarily alters brain pathology, while in the subsequent effector phase of the immune response, the spinal cord is involved. Inhibition of iNOS during the priming phase of the immune res…

0301 basic medicineCD4-Positive T-LymphocytesPathologyexperimental autoimmune encephalomyelitisNitric Oxide Synthase Type IIApoptosismedicine.disease_causeAutoimmunityMice0302 clinical medicineImmunology and AllergyEnzyme InhibitorsOriginal ResearchMice KnockoutbiologyExperimental autoimmune encephalomyelitisautoimmunityCell DifferentiationNitric oxide synthaseOligodendrogliamedicine.anatomical_structureNG-Nitroarginine Methyl EsterIntegrin alpha Mlcsh:Immunologic diseases. Allergymedicine.medical_specialtyEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisLymphoid TissueCentral nervous systemImmunology03 medical and health sciencesInterferon-gammaImmune systemmedicineAnimalsHumansNOS2−/− neuroinflammationNeuroinflammationbusiness.industryMultiple sclerosisinducible nitric oxide synthaseDendritic Cellsmedicine.diseasecentral nervous systemMice Inbred C57BL030104 developmental biologybiology.proteinbusinesslcsh:RC581-607030215 immunologyGranulocytesFrontiers in Immunology
researchProduct

Circadian Rhythm in Adipose Tissue: Novel Antioxidant Target for Metabolic and Cardiovascular Diseases

2020

Obesity is a major risk factor for most metabolic and cardiovascular disorders. Adipose tissue is an important endocrine organ that modulates metabolic and cardiovascular health by secreting signaling molecules. Oxidative stress is a common mechanism associated with metabolic and cardiovascular complications including obesity, type 2 diabetes, and hypertension. Oxidative stress can cause adipose tissue dysfunction. Accumulating data from both humans and experimental animal models suggest that adipose tissue function and oxidative stress have an innate connection with the intrinsic biological clock. Circadian clock orchestrates biological processes in adjusting to daily environmental changes…

0301 basic medicineCell signalingPhysiologyClinical BiochemistryCircadian clockAdipose tissueAdipokineReviewBioinformaticsmedicine.disease_causeBiochemistrysirtuin 103 medical and health sciences0302 clinical medicineAdipokinesclock genesMedicineoxidative stressCircadian rhythmbranched-chain amino acidsMolecular Biologyendothelial nitric oxide synthasebiologySirtuin 1business.industrylcsh:RM1-950Cell BiologyCLOCK030104 developmental biologylcsh:Therapeutics. Pharmacologybiology.proteinbusiness030217 neurology & neurosurgeryOxidative stressAntioxidants
researchProduct

Type 5 phosphodiesterase (PDE5) and the vascular tree: from embryogenesis to aging and disease

2020

Highlights • Vascular development depends on the timely differentiation of endothelial and smooth muscle cells, that mutually influence their developmental fate. • Endothelial and vascular smooth muscle cell (VSMC) compartments can mutually influence cell and tissue modifications during vascular aging and in vascular disease. • Keeping in mind that PDE5 is mainly expressed in VSMCs, we surveyed the literature on the role of PDE5 in vascular development, aging and disease. • Although most results have been obtained by PDE5 pharmacological inhibition, no data are available, to date, on vascular development, aging or disease following PDE5 genetic ablation.

0301 basic medicineCell typeAgingVascular smooth muscleMyocytes Smooth MuscleVSMCsEmbryonic DevelopmentECsContext (language use)DiseaseBiologyMuscle Smooth VascularArticle03 medical and health sciences0302 clinical medicinenitric oxidevascular smooth muscle cellsHumansBioresorbable vascular scaffoldCyclic Nucleotide Phosphodiesterases Type 5ECEmbryogenesisPhosphodiesteraseVascular agingCell biologycGMPSettore MED/23ECs; PDE5; VSMCs; cGMP; nitric oxide030104 developmental biologyVascular aging; vascular smooth muscle cells; phosphodiesterasePDE5phosphodiesterase030217 neurology & neurosurgeryFunction (biology)Developmental Biology
researchProduct

Modification of DNA structure by reactive nitrogen species as a result of 2-methoxyestradiol–induced neuronal nitric oxide synthase uncoupling in met…

2020

Abstract 2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17β-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME. We further achieved to identify the specific reactive nitrogen species involved in DNA-damaging mechanism of 2-ME. The study was performed using metastatic osteosarcoma 143B cells. We detected…

0301 basic medicineDNA damageClinical BiochemistryBone NeoplasmsNitric Oxide Synthase Type INitric OxideBiochemistryNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePeroxynitrous AcidHumansMTT assayViability assaylcsh:QH301-705.5Reactive nitrogen speciesSettore CHIM/02 - Chimica FisicaOsteosarcomalcsh:R5-920Settore BIO/16 - Anatomia UmanaOrganic ChemistryDNAReactive Nitrogen Species2-MethoxyestradiolPeroxynitrous acid030104 developmental biologychemistrylcsh:Biology (General)Settore CHIM/03 - Chimica Generale E InorganicaCancer cellBiophysicslcsh:Medicine (General)030217 neurology & neurosurgeryPeroxynitrite2 methoxyestradiol nitric oxide chemotherapyResearch PaperRedox Biology
researchProduct

Red fruit (Pandanus conoideus Lam) oil stimulates nitric oxide production and reduces oxidative stress in endothelial cells

2018

Abstract Red fruit oil (RFO) is used in traditional medicine for the treatment of a number of diseases. However, evidence for the biological effects and action mechanisms is still lacking. In the present study, we show for the first time that RFO stimulated the phosphorylation of the endothelial nitric oxide synthase (eNOS) and enhanced the NO production in human endothelial cells. In isolated mouse aorta, RFO induced a vasodilation, with a significant effect evident at a concentration as low as 1:100,000 dilution. The RFO-induced vasodilation could be completely prevented by eNOS inhibition, indicating that RFO contains highly potent substances stimulating eNOS activity. In addition, RFO r…

0301 basic medicineEndothelial cellsMedicine (miscellaneous)VasodilationMouse aorta030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeNitric oxide03 medical and health scienceschemistry.chemical_compoundPandanus conoideus Lam0302 clinical medicineEnosmedicineTX341-641Nutrition and DieteticsbiologyNutrition. Foods and food supplyNitric oxidePandanus conoideusbiology.organism_classificationComet assay030104 developmental biologychemistryOxidative stressPhosphorylationEndothelial nitric oxide synthaseReactive oxygen speciesOxidative stressFood ScienceJournal of Functional Foods
researchProduct

Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications

2017

Asthma is a complex respiratory disorder characterized by marked heterogeneity in individual patient disease triggers and response to therapy. Several asthma phenotypes have now been identified, each defined by a unique interaction between genetic and environmental factors, including inflammatory, clinical and trigger-related phenotypes. Endotypes further describe the functional or pathophysiologic mechanisms underlying the patient's disease. type 2-driven asthma is an emerging nomenclature for a common subtype of asthma and is characterized by the release of signature cytokines IL-4, IL-5 and IL-13 from cells of both the innate and adaptive immune systems. A number of well-recognized bioma…

0301 basic medicineImmunologyDiseasePeriostin03 medical and health sciencesTh2 Cells0302 clinical medicineImmune systemT-Lymphocyte SubsetsmedicineAnimalsHumansImmunology and AllergyAsthmaInflammationbusiness.industrymedicine.diseasePhenotypeAsthmaPathophysiologyrespiratory tract diseases030104 developmental biology030228 respiratory systemExhaled nitric oxideImmunologyCytokinesSputumInflammation Mediatorsmedicine.symptombusinessBiomarkersSignal TransductionClinical &amp; Experimental Allergy
researchProduct

Uncovering the Signaling Pathway behind Extracellular Guanine-Induced Activation of NO System: New Perspectives in Memory-Related Disorders

2018

Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptot…

0301 basic medicineMAPK/ERK pathwayCell signalingGuanineGuanosine03 medical and health scienceschemistry.chemical_compoundGuanine deaminase0302 clinical medicineCGMP; ERK; Guanine; L-NAME; Nitric oxide; SH-SY5Y cell line; Pharmacology; Pharmacology (medical)L-NAMEnitric oxideExtracellularguaninePharmacology (medical)Original ResearchPharmacologyChemistrylcsh:RM1-950Cell biologycGMPERKlcsh:Therapeutics. Pharmacology030104 developmental biologySignal transductionSH-SY5Y cell line030217 neurology & neurosurgeryIntracellularFrontiers in Pharmacology
researchProduct